\& Nereson, 1968). The tetragonal structure, however, is different from that of $\mathrm{UC}_{2}, \mathrm{LaC}_{2}$ and other known tetragonal dicarbides (Atoji, 1961) where the C_{2} groups are aligned parallel to the c axis. The monoclinic structure is also unique among dicarbide structures.

The actual $\mathrm{C}-\mathrm{C}$ distances in the high temperature phases are probably larger than the observed values, owing to the effect of thermal motion of the carbon atoms. Thus it would appear that the $\mathrm{C}-\mathrm{C}$ distance is essentially constant at about $1 \cdot 30-1 \cdot 35 \AA$ in all three phases, in good agreement with the other group 3A dicarbides.

References

Atoл, M. (1961). J. Chem. Phys. 35, 1950.
Bacon, G. E. (1962). Neutron Diffraction. Oxford: Clarendon Press.
Bowman, A. L., Arnold, G. P., Witteman, W. G., Wallace, T. C. \& Nereson, N. G. (1966). Acta Cryst. 21, 670. Bowman, A. L., Krikorian, N. H., Arnold, G. P., Wallace, T. C. \& Nereson, N. G. (1968). Acta Cryst. B24, 459.

Bowman, A. L., Wallace, T. C., Yarnell, J. L., Wenzel, R. G. \& Storms, E. K. (1965). Acta Cryst. 19, 6.

Bowman, M. G., Hull, D. E., Witteman, W. G., Arnold, G. P. \& Bowman, A. L. (1966). Rev. Sci. Instrum. 37, 1543.

Chiotti, P., Korbitz, F. W. \& Dooley, G. J., III (1967). J. Nucl. Mat. 23, 55.

Elliott, N. \& Hastings, J. (1961). Acta Cryst. 14, 1018.
Hill, N. A. \& Cavin, O. B. (1964). J. Amer. Ceram. Soc. 47, 360.
Hunt, E. G. \& Rundle, R. E. (1951). J. Amer. Chem. Soc. 73, 4777.
Langer, S., Baldwin, N., Gantzel, P., Kester, F. \& Hancock, C. (1964). Nuclear Metallurgy, Vol. X. Compounds of Interest in Nuclear Reactor Technology, p. 359. The Metallurgical Society of American Inst. of Mining, Metallurgical and Petroleum Engineers.
Rupert, G. N. (1965). Rev. Sci. Instrum. 36, 1629.
Satow, T. (1967). J. Nucl. Mat. 21, 249.
Sequeira, A. (1965). Acta Cryst. 18, 291.
Sidhu, S. S., Heaton, L., Zauberis, D. D. \& Campos, F. P. (1956). J. Appl. Phys. 27, 1040.

Wilhelm, H. A. \& Chiotti, P. (1950). Trans. Amer. Soc. Metals, 42, 1295.

Acta Cryst. (1968). B24, 1123

The Crystal Structure of the Dimer of 9-Anthraldehyde

By Marianne Ehrenberg*
Department of Chemistry, University College, Gower Street, London W.C. 1, England

(Received 25 October 1967)

Abstract

The structure of the dimer of 9-anthraldehyde has been determined by means of Patterson projections and three-dimensional least-squares refinements. The aldehyde groups are in the trans configuration.

Crystals of the dimer of 9-anthraldehyde, [$\left.\left(\mathrm{C}_{14} \mathrm{H}_{9}\right) \mathrm{CHO}\right]_{2}$, were prepared by P. Sarti-Fantoni, the dimerization taking place in the solid state by the action of ultraviolet radiation on the monomer. Studies of the infrared spectra (Craig \& Sarti-Fantoni, 1966) indicated the trans configuration of the CHO groups with respect to the anthracene skeleton, although from the monomer structure a cis dimer formation might be expected. The structure determination was undertaken in order to confirm the trans configuration of the CHO groups with respect to the anthracene.

> Crystal data $\quad \begin{aligned} & a=9.62, b=7.86, c=8.81 \AA \quad \alpha=59^{\circ} 40^{\prime}, \beta=90^{\circ} 0^{\prime}, \\ & \gamma=65^{\circ} 56^{\prime} \\ & \text { Density, measured }=1.346 \mathrm{~g} . \mathrm{cm}^{-3} \\ & \text { Density, calculated }=1.34 \mathrm{~g} . \mathrm{cm}^{-3} \\ & \text { Systematic absences: none } \\ & \text { Space group } P \overline{1}\end{aligned}$

Limited three-dimensional data were collected ($0 k l \rightarrow 7 k l, h k 0$), the integrated intensities being read

[^0]on a Joyce-Loebl flying-spot microdensitometer and corrected by the appropriate geometrical correction factors. The structure was solved from $h 0 l$ and $h k 0$ Patterson projections and refined with the use of blockdiagonal least-squares calculations on 640 observed reflexions. With isotropic temperature factors a discrepancy index of 10.9% was obtained; by using anisotropic temperature factors for the carbon and oxygen atoms, it was reduced to 8.8%. Table 1 gives the final positional and thermal parameters. The anisotropic temperature factors are not regarded as significant because of the paucity of the data.

The dimer molecules lie on centres of symmetry and hence the CHO groups must be in the trans configuration with respect to the anthracene skeleton. Bond lengths and angles have normal values within the accuracy of the structure determination. The bond length between $\mathrm{C}(9)$ and $\mathrm{C}\left(10^{\prime}\right)$ connecting the two half-molecules is $1.61 \AA$, the same as found in diparaanthracene (Ehrenberg, 1966a). Each half-molecule is bent through an angle of $2 \times 23^{\circ}$, again similar to dipara-anthracene and the photo-isomer of bi(anthra-cene-9,10-dimethylene) (Ehrenberg, 1966b).

Fig. 1 is a schematic drawing of the molecule showing bond lengths and angles. The standard de-

Table 1. Positional and thermal parameters

	x $(\AA ̊)$	$\begin{gathered} y \\ (\AA) \end{gathered}$	$\begin{gathered} z \\ (\AA) \end{gathered}$	$U_{\text {iso }}$
C(1)	0.773	1.319	$2 \cdot 172$	0.0372
C(2)	$2 \cdot 149$	$1 \cdot 252$	$2 \cdot 460$	0.0348
C(3)	$3 \cdot 134$	1.053	1.500	0.0330
C(4)	2.705	0.930	$0 \cdot 263$	0.0285
C(5)	-1.349	$3 \cdot 137$	-3.842	0.0284
C(6)	-2.904	4.349	-4.513	0.0348
C(7)	-3.860	4.517	-3.576	0.0349
C(8)	-3.366	$3 \cdot 539$	-1.926	0.0290
C(9)	-1.099	$1 \cdot 168$	0.574	0.0257
C(10)	0.854	$0 \cdot 800$	-1.329	0.0259
C(11)	-0.806	$2 \cdot 155$	-2.157	0.0207
C(12)	-1.798	$2 \cdot 327$	-1.200	0.0197
C(13)	0.337	$1 \cdot 190$	0.919	0.0219
C(14).	1.326	0.989	0.002	0.0159
C(15)	-2.254	2.014	$1 \cdot 339$	0.0351
O(16)	-2.907	$1 \cdot 356$	$2 \cdot 213$	0.0628
H(17)	0.023	$1 \cdot 314$	2.979	
H(18)	$2 \cdot 487$	$1 \cdot 368$	$3 \cdot 437$	
H(19)	$4 \cdot 223$	0.992	1.738	
H(20)	3.475	0.784	-0.507	
H(21)	-0.591	2.937	-4.585	0.0461
H(22)	-3.319	$5 \cdot 201$	-5.831	0.0461
H(23)	-5.054	5.475	-4.185	
H(24)	-4.144	$3 \cdot 682$	-1.164	
H(25)	-2.548	$3 \cdot 331$	1.013	
H(26)	1.563	1.021	-2.154	

viations of the bond lengths vary between 0.011 and $0.014 \AA$ and for the angles between 39^{\prime} and 56^{\prime}. Fig. 2 shows the projection of the structure on to the $b c$ plane.

In the monomer of 9 -anthraldehyde the angle between the anthracene and the aldehyde planes is 27° (Trotter, 1959) and a close contact of $3.06 \AA$ is ob-

Fig. 1. Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$.

Fig. 2. Projection of the structure on the $b c$ plane.
served between the oxygen atom and $\mathrm{C}(1)$. In the dimer, however, the oxygen of the aldehyde group is closest to the central carbon in the second half of the dimer molecule, $\mathrm{C}\left(10^{\prime}\right)$, and the angle defined above is $85^{\circ} 30^{\prime}$ and the distance is $2.82 \AA$ (Fig. 2).

The closest contacts to the oxygen atom at the equivalent point (000) are:
$3 \cdot 33 \AA$ to $\mathrm{C}(8)$ at the equivalent point $(1 \mathrm{~T} 0)$,
$3 \cdot 46 \AA$ to $\mathrm{C}(2)$ at the equivalent point (001),
$3 \cdot 48 \AA$ to $\mathrm{C}(7)$ at the equivalent point $(1 \overline{\mathrm{~T}} 0)$,
indicating that the molecules are held together by van der Waals forces only.

References

Craig, D. P. \& Sarti-Fantoni, P. (1966). Chem. Comm. 20, 742.
Ehrenberg, M. (1966a). Acta Cryst. 20, 177.
Ehrenberg, M. (1966b). Acta Cryst. 20, 183.
Trotter, J. (1959). Acta Cryst. 12, 922.

A Refinement of the Crystal Structure of KSCN

By C. Akers, S.W.Peterson and R.D.Willett
Department of Chemistry, Washington State University, Pullman, Washington 99163, U.S.A.

(Received 5 June 1967)
The crystal structure of KSCN has been redetermined in order to obtain more reliable bond distances for the thiocyanate ion. The C-S bond length was found to be $1.689 \pm 0.013 \AA$, the $\mathrm{C}-\mathrm{N}$ bond length $1 \cdot 149 \pm 0.014 \AA$, and the S-C-N angle $178 \cdot 3 \pm 1 \cdot 2^{\circ}$.

Two previous investigations of the crystal structure of potassium thiocyanate have been made (Klug, 1933; Büssem, Günther \& Tubin, 1934). Both studies made use of zonal data and differed substantially in only the position of the carbon atom in the thiocyanate ion. Because of the inherent errors in results from projection data and the growing need for more accurate interatomic distances for theoretical purposes, it was decided to reinvestigate this structure.

Crystals of analytical grade were recrystallized from an alcohol-water solution. Two separate crystals, whose dimensions varied from 0.07 to 0.10 mm , were used to collect the data because the first began to decompose before the investigation was complete. Systematic extinctions (0 kl for $k=2 n+1$ and $h 0 l$ for $l=2 n+1$) agree with the previous space group assignments of Pbcm. Lattice constants, determined from precession photographs, are $a=6.673 \pm 0.003, b=6.715$ $\pm 0.003, c=7.543 \pm 0.005 \AA$. Intensity data were collected on a Picker diffractometer equipped with a General Electric single-crystal orienter using Mo $K \alpha$
radiation. Angle settings were calculated with an existing Fortran II program (Shoemaker, 1962). The Lorentz-polarization corrections were made but absorption effects were neglected. A three-dimensional Fourier synthesis (Sly, Shoemaker \& Van den Hende, 1962), based on signs calculated from the positions of one of the previous investigations (Klug, 1933), gave the correct position for the carbon atom and improved the other positions. Anisotropic least-square refinement was carried out with the Busing, Martin \& Levy (1962) program, and final values of $R_{1}=0.080$ and $R_{3}=0.067$ were obtained. Scattering factors were obtained from International Tables for X-ray Crystallography (1962). Final parameters are listed in Table 1, with observed and calculated structure factors given in Table 2. The weighting scheme used is as follows:

$$
\begin{gathered}
\text { Weight }=1 / \sigma^{2} \\
\sigma^{2}=F^{2} / 4 I^{2}\left[E+2 B+(0 \cdot 1 I)^{2}\right]
\end{gathered}
$$

where F is the structure factor, I is the intensity, E is the total count and B is the background. Bond dis-

Table 1. Final parameters and R values for KSCN
Standard deviations are given in parentheses.
The $\beta_{i j}$ are defined by: $T=\exp \left(-\beta_{11} h^{2}-\beta_{22} k^{2}-\beta_{33} l^{2}-2 \beta_{12} h k-2 \beta_{13} h l-2 \beta_{23} k l\right)$. β_{13} and $\beta_{23}=0$ by symmetry.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	
K	$0 \cdot 2059$ (5)	$0 \cdot 25$	$0 \cdot 0$	$0 \cdot 0128$ (8)	$0 \cdot 0089$ (7)	0.0063 (5)	$0 \cdot 0$	
S	$0 \cdot 6033$ (5)	$0 \cdot 1074$ (5)	$0 \cdot 25$	$0 \cdot 0085$ (8)	0.0068 (9)	$0 \cdot 0068$ (7)	-0.0008 (8)	
C	0.7737 (19)	$0 \cdot 2919$ (18)	0.25	$0 \cdot 0077$ (32)	0.0132 (38)	0.0014 (21)	-0.0013 (31)	
N	$0 \cdot 8934$ (15)	0.4139 (16)	$0 \cdot 25$	$0 \cdot 0094$ (27)	0.0133 (31)	$0 \cdot 0061$ (20)	$0 \cdot 0003$ (30)	
	$R_{1}=\sum_{h k l} \\|\left\|F_{\mathrm{obs}}\right\|-\left\|F_{\mathrm{calc}}\right\|\left\|/ \sum_{h k l}\right\| F_{\mathrm{obs}} \mid=0.080$							
	$R_{3}=\sqrt{h k l} \sum^{\Sigma w\left(\left\|F_{\mathrm{obs}}\right\|-\left\|F_{\mathrm{calc}}\right\|\right)^{2}} / \underset{h k l}{V^{-} \Sigma \overline{\left(F_{\mathrm{obs})}\right)^{2}}}=0.067$							

[^0]: * Present address: Sir John Cass College, Whitechapel High Street, London E.1, England.

